Search results for "Convolutional Neural Networks"

showing 10 items of 29 documents

Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks

2020

Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…

010504 meteorology & atmospheric sciencesComputer sciencehyperspectral image classificationScience0211 other engineering and technologiesgeoinformatics02 engineering and technologyneuroverkot01 natural sciencesConvolutional neural networkpuulajitPARAMETERSSet (abstract data type)LIDARFORESTSClassifier (linguistics)021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryDeep learningspektrikuvausQHyperspectral imagingdeep learningPattern recognition15. Life on landmiehittämättömät ilma-aluksetPerceptron113 Computer and information sciencesClass (biology)drone imagery3d convolutional neural networksmetsänarviointiMACHINEkoneoppiminentree species classification3D convolutional neural networksGeneral Earth and Planetary SciencesRGB color modelArtificial intelligencekaukokartoitusbusinesshyperspectral image classificationRemote Sensing
researchProduct

Benchmark database for fine-grained image classification of benthic macroinvertebrates

2018

Managing the water quality of freshwaters is a crucial task worldwide. One of the most used methods to biomonitor water quality is to sample benthic macroinvertebrate communities, in particular to examine the presence and proportion of certain species. This paper presents a benchmark database for automatic visual classification methods to evaluate their ability for distinguishing visually similar categories of aquatic macroinvertebrate taxa. We make publicly available a new database, containing 64 types of freshwater macroinvertebrates, ranging in number of images per category from 7 to 577. The database is divided into three datasets, varying in number of categories (64, 29, and 9 categori…

0106 biological sciencesComputer scienceta1172Sample (statistics)monitorointi02 engineering and technologyneuroverkot01 natural sciencesConvolutional neural network0202 electrical engineering electronic engineering information engineeringkonenäköfine-grained classification14. Life underwaterFine-grained classificationInvertebrateta113ta112Contextual image classificationbusiness.industry010604 marine biology & hydrobiologyDeep learningConvolutional Neural NetworksBenchmark databasedeep learningPattern recognitionDeep learningselkärangattomatvedenlaatu6. Clean waterkoneoppiminenBenthic zoneBenthic macroinvertebratesbiomonitoringSignal ProcessingBiomonitoringta1181lajinmääritys020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionArtificial intelligenceWater qualitybusinessbenthic macroinvertebrates
researchProduct

Taxonomic Classification for Living Organisms Using Convolutional Neural Networks

2017

Taxonomic classification has a wide-range of applications such as finding out more about evolutionary history. Compared to the estimated number of organisms that nature harbors, humanity does not have a thorough comprehension of to which specific classes they belong. The classification of living organisms can be done in many machine learning techniques. However, in this study, this is performed using convolutional neural networks. Moreover, a DNA encoding technique is incorporated in the algorithm to increase performance and avoid misclassifications. The algorithm proposed outperformed the state of the art algorithms in terms of accuracy and sensitivity, which illustrates a high potential f…

0301 basic medicinelcsh:QH426-470Taxonomic classificationADNCodificació Teoria de laBiologyBioinformaticsMachine learningcomputer.software_genreDNA; genes; taxonomic classification; convolutional neural networks; encodingConvolutional neural networkArticle03 medical and health sciences0302 clinical medicineBiologia -- ClassificacióEncoding (memory)convolutional neural networksGeneticstaxonomic classificationSensitivity (control systems)genesGenetics (clinical)ta113Biology -- Classificationbusiness.industryBiological classificationCoding theoryDNAencodinglcsh:Genetics030104 developmental biologyGenes030220 oncology & carcinogenesisEncodingConvolutional neural networksArtificial intelligenceCoding theorybusinesscomputerGens
researchProduct

Machine Learning-Based Classification of Vector Vortex Beams.

2020

Structured light is attracting significant attention for its diverse applications in both classical and quantum optics. The so-called vector vortex beams display peculiar properties in both contexts due to the non-trivial correlations between optical polarization and orbital angular momentum. Here we demonstrate a new, flexible experimental approach to the classification of vortex vector beams. We first describe a platform for generating arbitrary complex vector vortex beams inspired to photonic quantum walks. We then exploit recent machine learning methods -- namely convolutional neural networks and principal component analysis -- to recognize and classify specific polarization patterns. O…

Angular momentumComputer sciencequantum opticquanutm informationphotonicsPrincipal component analysisGeneral Physics and AstronomyFOS: Physical sciencesMachine learningcomputer.software_genre01 natural sciencesConvolutional neural networkSettore FIS/03 - Fisica Della Materiaquant-phPolarization0103 physical sciencesQuantum walk010306 general physicsQuantum opticsorbital angular momentum; machine learning; vector vortex beamsQuantum PhysicsQuantum opticsbusiness.industryVortex flowOptical polarizationVectorsVortexmachine learningConvolutional neural networksArtificial intelligencePhotonicsbusinessQuantum Physics (quant-ph)computerStructured lightPhysical review letters
researchProduct

Using Aerial Platforms in Predicting Water Quality Parameters from Hyperspectral Imaging Data with Deep Neural Networks

2020

In near future it is assumable that automated unmanned aerial platforms are coming more common. There are visions that transportation of different goods would be done with large planes, which can handle over 1000 kg payloads. While these planes are used for transportation they could similarly be used for remote sensing applications by adding sensors to the planes. Hyperspectral imagers are one this kind of sensor types. There is need for the efficient methods to interpret hyperspectral data to the wanted water quality parameters. In this work we survey the performance of neural networks in the prediction of water quality parameters from remotely sensed hyperspectral data in freshwater basin…

Coefficient of determinationArtificial neural networkRemote sensing applicationvesien tilaspektrikuvausHyperspectral imagingneuroverkotvedenlaatuConvolutional neural networkwater qualityPearson product-moment correlation coefficientsymbols.namesakeremote sensinghyperspectralilmakuvakartoitusMultilayer perceptronconvolutional neural networkssymbolsEnvironmental scienceWater qualitykaukokartoitusRemote sensing
researchProduct

Deep CNN for IIF Images Classification in Autoimmune Diagnostics

2019

The diagnosis and monitoring of autoimmune diseases are very important problem in medicine. The most used test for this purpose is the antinuclear antibody (ANA) test. An indirect immunofluorescence (IIF) test performed by Human Epithelial type 2 (HEp-2) cells as substrate antigen is the most common methods to determine ANA. In this paper we present an automatic HEp-2 specimen system based on a convolutional neural network method able to classify IIF images. The system consists of a module for features extraction based on a pre-trained AlexNet network and a classification phase for the cell-pattern association using six support vector machines and a k-nearest neighbors classifier. The class…

Computer science02 engineering and technologyConvolutional neural networklcsh:TechnologyIIF imageAlexNetlcsh:Chemistry03 medical and health sciencesconvolutional neural networks (CNNs)Autoimmune diseaseClassifier (linguistics)0202 electrical engineering electronic engineering information engineeringGeneral Materials Scienceautoimmune diseasesInstrumentationlcsh:QH301-705.5030304 developmental biologyIIF imagesFluid Flow and Transfer Processes0303 health sciencesDeep cnnIndirect immunofluorescenceaccuracybusiness.industrylcsh:TProcess Chemistry and Technologyk-nearest neighbors (KNN)General EngineeringPattern recognitionIIfClass (biology)lcsh:QC1-999Computer Science ApplicationsSupport vector machinelcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040System parameters020201 artificial intelligence & image processingsupport vector machine (SVM)Artificial intelligencebusinesslcsh:Engineering (General). Civil engineering (General)lcsh:PhysicsApplied Sciences
researchProduct

Computation of Psycho-Acoustic Annoyance Using Deep Neural Networks

2019

Psycho-acoustic parameters have been extensively used to evaluate the discomfort or pleasure produced by the sounds in our environment. In this context, wireless acoustic sensor networks (WASNs) can be an interesting solution for monitoring subjective annoyance in certain soundscapes, since they can be used to register the evolution of such parameters in time and space. Unfortunately, the calculation of the psycho-acoustic parameters involved in common annoyance models implies a significant computational cost, and makes difficult the acquisition and transmission of these parameters at the nodes. As a result, monitoring psycho-acoustic annoyance becomes an expensive and inefficient task. Thi…

Computer scienceComputationsubjective annoyanceContext (language use)Annoyance02 engineering and technologycomputer.software_genre01 natural sciencesConvolutional neural networklcsh:TechnologyReduction (complexity)lcsh:Chemistryconvolutional neural networks0202 electrical engineering electronic engineering information engineeringWirelessGeneral Materials Sciencewireless acoustic sensor networksInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer Processesbusiness.industrylcsh:TProcess Chemistry and Technology010401 analytical chemistryGeneral EngineeringRegression analysislcsh:QC1-9990104 chemical sciencesComputer Science Applicationspsycho-acoustic parametersTransmission (telecommunications)lcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040020201 artificial intelligence & image processingData miningbusinesslcsh:Engineering (General). Civil engineering (General)Zwicker modelcomputerlcsh:PhysicsApplied Sciences
researchProduct

Towards a Hierarchical Multitask Classification Framework for Cultural Heritage

2018

Digital technologies such as 3D imaging, data analytics and computer vision opened the door to a large set of applications in cultural heritage. Digital acquisition of a cultural assets takes nowadays a couple of seconds thanks to the achievements in 2D and 3D acquisition technologies. However, enriching these cultural assets with labels and relevant metadata is still not fully automatized especially due to their nature and specificities. With the recent publication of several cultural heritage datasets, many researchers are tackling the challenge of effectively classifying and annotating digital heritage. The challenges that are often addressed are related to visual recognition and image c…

Computer scienceData field02 engineering and technology[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Multitask ClassificationCultural diversity0202 electrical engineering electronic engineering information engineering[INFO]Computer Science [cs]Digital preservationComputingMilieux_MISCELLANEOUSContextual image classificationDigital heritagebusiness.industryDeep learningConvolutional Neural Networks[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020206 networking & telecommunicationsData scienceMetadataCultural heritageDigital preservationCultural heritage020201 artificial intelligence & image processingArtificial intelligencebusinessClassifier (UML)
researchProduct

Robust Resolution-Enhanced Prostate Segmentation in Magnetic Resonance and Ultrasound Images through Convolutional Neural Networks

2021

[EN] Prostate segmentations are required for an ever-increasing number of medical applications, such as image-based lesion detection, fusion-guided biopsy and focal therapies. However, obtaining accurate segmentations is laborious, requires expertise and, even then, the inter-observer variability remains high. In this paper, a robust, accurate and generalizable model for Magnetic Resonance (MR) and three-dimensional (3D) Ultrasound (US) prostate image segmentation is proposed. It uses a densenet-resnet-based Convolutional Neural Network (CNN) combined with techniques such as deep supervision, checkpoint ensembling and Neural Resolution Enhancement. The MR prostate segmentation model was tra…

Computer scienceMR prostate imagingUS prostate imagingINGENIERIA MECANICAconvolutional neural networklcsh:TechnologyConvolutional neural network030218 nuclear medicine & medical imaginglcsh:Chemistry03 medical and health sciences0302 clinical medicinemedicineGeneral Materials Sciencelcsh:QH301-705.5Instrumentation030304 developmental biologyFluid Flow and Transfer Processes0303 health sciencesmedicine.diagnostic_testlcsh:Tbusiness.industryProcess Chemistry and TechnologyConvolutional Neural NetworksUltrasoundResolution (electron density)General EngineeringMagnetic resonance imagingPattern recognitionProstate Segmentationlcsh:QC1-999Computer Science ApplicationsNeural resolution enhancementlcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Christian ministryArtificial intelligencelcsh:Engineering (General). Civil engineering (General)Magnetic Resonance and Ultrasound Imagesbusinesslcsh:PhysicsProstate segmentationApplied Sciences
researchProduct

Deep Learning Architectures for DNA Sequence Classification

2016

DNA sequence classification is a key task in a generic computational framework for biomedical data analysis, and in recent years several machine learning technique have been adopted to successful accomplish with this task. Anyway, the main difficulty behind the problem remains the feature selection process. Sequences do not have explicit features, and the commonly used representations introduce the main drawback of the high dimensionality. For sure, machine learning method devoted to supervised classification tasks are strongly dependent on the feature extraction step, and in order to build a good representation it is necessary to recognize and measure meaningful details of the items to cla…

DNA sequence classificatio Convolutional Neural Networks Recurrent Neural Networks Deep learning networksSettore INF/01 - Informatica
researchProduct